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We propose a method to sample stationary properties of solutions of stochastic differential equations, which
is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state
space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the
stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the
corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each
patch is obtained by counting the attempted transitions between all different patches. The results are patchworked
to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated
for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by
three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential,
a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian
white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic
drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms
can be related to truncated Markov chains.
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I. INTRODUCTION

For ergodic systems it is possible to infer statistical
properties by monitoring time series since for large observation
times the temporal average of an observable converges to the
statistical average. However, in practice the observation time is
always finite. Therefore regions of low probability are typically
rarely visited within the observation time. Nevertheless they
could give substantial contributions to expectation values. This
is the problem of rare events or large deviations. A related
problem may occur if several regions of large probability are
separated by regions of low probability. When starting in one
of the regions of large probability the system is typically caught
in this region for long times. If the observation time is not long
enough other regions are not seen with high probability. We
refer to this as the problem of rare transitions.

Time series could be obtained from experiments, ob-
servations of natural phenomena, or computer simulations.
Computer simulations of stochastic systems are used to access
statistical properties and the problem of rare events or rare
transitions occurs in many different fields.

Applications in statistical physics include equilibrium
phenomena such as phase transitions, especially of first order,
or reaction kinetics, as well as nonequilibrium phenomena
such as polymer folding and relaxation of spin glasses.
Other applications are in queuing theory, for example in
communication networks, in supply chain management, and
in computation. A detailed review of possible applications is
beyond the scope of this paper.

Several simulation techniques have been developed to
overcome the problems of rare events or rare transitions and
we want to divide them into two categories. As the first
category we consider techniques that are designed to estimate
the probability of a particular rare event such as first exit
events when one is interested in the probability that a certain
threshold is passed until a certain time. We consider these as
dynamic properties of the system. There is a huge literature

on methods of this type and we cannot give a detailed review
here. Many of them consider not independent trajectories but
generate artificially a family of trajectories with the desired
properties suitable to improve the statistics of the rare event.
The prevalence of these trajectories should be compensated
by properly adjusting their statistical weight. Some examples
from this category are [1–5]; cf. also [6,7] for reviews.

As the second category we consider techniques that are
designed to estimate only stationary expectation values of
observables of the system. Our method is in this category
and in the following we will sketch some other methods in this
spirit.

A deterministic numerical evaluation of high-dimensional
integrals is hardly feasible and Monte Carlo methods are used
instead [8]. They appear for example in statistical physics
where one is interested in expectation values of observables
according to some stationary probability measure on the phase
space, the dimension of which is typically a multiple of the
number of particles.

When regions of state space that contribute massively
to the integral are chosen only with small probability and,
on the other hand, regions that contribute only little to the
integral are chosen very often, the simulation is inefficient. In
importance sampling the sample distribution is modified, such
that regions contributing much to the integral are chosen more
frequently than regions that contribute almost nothing to the
integral. Samples according to the modified distribution might
be easier to generate than according to the original distribution.
Since one knows how the sample distribution is modified one
can reconstruct expectation values according to the original
distribution; see Refs. [9,10] for pedagogical introductions.
The optimal choice of the sample distribution is discussed,
e.g., in [11].

In general, in particular in high dimensions, it is a nontrivial
task to efficiently generate a random state according to
some given probability distribution. In Markov chain Monte
Carlo simulations one uses Markov chains which approach
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asymptotically the desired stationary probability distribution.
Examples are Metropolis and Glauber algorithms [12–14].

These methods might suffer the rare event problem as well.
Additionally, the Markov chain needs to assume its stationary
state reasonably fast. In particular, this is not ensured if
there are rare transitions from one frequently visited region
into another through a region that is only seldom visited.
This happens for instance when sampling with the canonical
measure at a first-order phase transition, where a long time
is needed to overcome a free energy barrier. Similarly to
the aforementioned importance sampling, in Markov chain
Monte Carlo simulations there are strategies to overcome this
problem by sampling with a modified probability measure
that is almost constant over the region of interest. To this
purpose the transition probabilities are changed such that the
Markov chain has a different stationary probability measure
and visits all interesting regions of state space reasonable fast.
In multicanonical simulations [15] the transition probabilities
are changed after the performance of a simulation and the
procedure is iterated. For a statistical physics view see,
e.g., [16,17], and for a review from the perspective of
telecommunication [18]. In Wang-Landau sampling [19] the
transition probabilities are changed continuously and after
predefined time periods the strength of the new modifications
is reduced in multiple steps. Hence it is a mixture of continuous
modifications and an iterative procedure. In [20] the transition
probabilities are changed continuously throughout the whole
simulation.

A different approach to overcome the problem of rare
passages is the replica exchange method. There the state space
is enlarged to contain multiple copies of the original system.
Then a Markov chain on this enlarged state space which has
different transition probabilities on each copy of the original
system is used, thus leading to different stationary measures
on different copies. Additionally to the dynamics on each
copy, the configurations of the copies are exchanged with a
probability depending on the configuration of these copies
thus enabling rare passages [21].

The methods of Refs. [15,19,20] are based on the modi-
fication of Markov chains that are obtained through certain
changes in the transition probabilities. Formally, the modified
processes can be seen as truncated Markov chains [22].

In this paper we are interested in stochastic differential
equations (SDEs) where obviously also rare events or rare
transitions may occur but we are not aware of specialized
methods investigating stationary properties in this context [23].
We use a decomposition of the state space into nonoverlapping
patches to sample the stationary probability density of SDEs.
We simulate the processes strictly truncated to each of this
patches. Eventually we assemble data from the simulations
of all patches and average them with the correct weights
obtained from the number of attempted transitions between
different patches. With this patchwork we obtain mean values
according to the stationary measure of the original process.
If the decomposition is chosen in an advantageous way one
can overcome the problems caused by rare transitions and
efficiently sample the whole state space. We emphasize that
our technique is not able to obtain the probability of arbitrary
nonstationary rare events such as first exits but it is designed to
obtain expectation values according to the stationary measure

without the need to wait for the rare events. The mean first
passage time, however, can be obtained from the stationary
probability density.

The theory of truncated Markov processes is originally
formulated for reversible processes [22]. We generalize the
procedure to chains that do not satisfy detailed balance. If
both forward and time reversed processes can be sampled,
patchwork sampling can be performed as well, with a slightly
modified version of the truncated process.

The paper is organized as follows. In Sec. II we recall the
notion of time reversal for stochastic processes. In Sec. III we
introduce our simulation method for reversible Markov chains
and apply it to a simple one-dimensional SDE describing
the diffusion of an overdamped particle in a double-well
potential. As a second example we consider a system of
many globally coupled overdamped particles in double-well
potentials subject to additive Gaussian white noise which
shows a phase transition in the thermodynamic limit [24]. In
Sec. IV we generalize the method to systems without detailed
balance and apply it to a simple one-dimensional proof of
principle system, the overdamped motion of a particles on the
circle in a periodic potential subject to deterministic drift and
additive noise. In the Appendix we explain the connection
of truncated Markov chains with simulation methods that use
modified transition probabilities, such as multicanonical or
Wang-Landau sampling.

II. TIME REVERSAL

We consider an irreducible, positive recurrent, time homo-
geneous Markov chain xt with countable state space X. That
means every state x ∈ X is reached almost surely in finite
time. When the initial positions are drawn from the unique
invariant measure �,xt is a stationary stochastic process. We
can consider this stationary process for all t ∈ Z.

For an arbitrary τ ∈ Z we can define the time reversed
process x̃t for each realization ω as

x̃t (ω) = xτ−t (ω). (1)

The Markov chain is called reversible if the original process
xt and the time reversed process x̃t have the same statistical
properties. That is for every n ∈ N,x0,x1, . . . ,xn have the same
joint probability distribution as xn,xn−1, . . . ,x0. This means
that due to homogeneity x0,x1, . . . ,xn and x̃0,x̃1, . . . ,x̃n have
the same joint distribution.

The process xt is reversible if and only if the detailed
balance condition

P (y|x)�(x) = P (x|y)�(y) (2)

is satisfied, where P (·|·) denotes the transition probability

P (y|x) = Pr(xt+1 = y|xt = x) (3)

and �(x) is the stationary measure of xt . If the process
xt is not reversible, the time reversed process x̃t is still a
well defined irreducible, positive recurrent time homogeneous
Markov chain and it has by construction the same unique
stationary probability measure � as the forward process xt .
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III. REVERSIBLE PROCESSES

At the beginning of this section we want to give an
intuitive picture, which serves as a guideline in the following
constructions. Imagine we want to obtain, by simulations, the
expectation value of some quantity, given that the system is
in some particular subset of all possible states. If we use a
Markov chain to sample the system, it might leave the region of
interest. To collect more data we have to wait until the Markov
chain returns. In principle we want to leave out all the steps
that the Markov chain performs out of the region of interest
and continue immediately at the point when the Markov chain
returns. The problem is that we do not know at which position
it will return, unless we have simulated the whole trajectory.
Fortunately we do not need the position of the return point of
exactly this trajectory. Since we are interested only in statistical
averages it is enough if the return position is chosen with the
right probability distribution. As it turns out, for reversible
processes the stationary distribution of the return points equals
the stationary distribution of the position immediately before
the process leaves the region of interest. Hence, each time the
Markov chain leaves the region of interest, we put it back to
the previous position. In the long time limit we obtain the
correct average quantities by this procedure. In the following
we want to formalize this procedure and show rigorously its
applicability.

We consider an irreducible, stationary, reversible Markov
chain xt ,t ∈ Z,xt ∈ X. For simplicity we further assume by
now that the state space X is countable. We will comment
before subsection A on how the procedure is generalized to
continuous systems.

A partition of the state space X is a collection of finitely
many, disjoint subsets (X1, . . . ,XN ) such that X = ⋃N

j=1 Xj

and all the Xj are measurable with Pr(xt ∈ Xj ) > 0. A
partition is called ergodic if for all j there is a positive
probability to reach any point in Xj from any other point
in Xj in finite time without leaving Xj in between. That is for
any xinitial,xfinal ∈ Xj for all j there exists some k ∈ N such
that the probability to stay in Xj until t = k and to hit xfinal at
t = k is nonzero,

Pr(xt ∈ Xj for 0 < t < k,xk = xfinal|x0 = xinitial) > 0. (4)

We construct a new Markov chain, the truncated process
x̂t , by modifying the transition probabilities from x ∈ Xj to
y /∈ Xj , where Xj is from an ergodic partition (X1, . . . ,XN )
of the state space, as follows:

P̂ (y|x) = c P (y|x), (5)

P̂ (x|x) = P (x|x) + (1 − c)
∑
y ′ /∈Xj

P (y ′|x), (6)

with c ∈ [0,1); all other transition probabilities remain un-
changed. One easily checks that the modified transition
probabilities conserve probability; that is,∑

y∈X

P̂ (y|x) = 1 (7)

for all x ∈ X. If we find a probability measure �̂j of x̂t that
satisfies detailed balance

P̂ (y|x)�̂j (x) = P̂ (x|y)�̂j (y), (8)

it must be the unique stationary measure of x̂t . We easily check
that

�̂j (x) = 1

Zc

�(x) ×
{

1, for x ∈ Xj,

c, for x /∈ Xj,
(9)

with normalization Zc = c �(X \ Xj ) + �(Xj ) is indeed a
solution of Eq. (8) when inserting Eqs. (5) and (6) into
Eq. (8) and using Eq. (2). In Kelly [22], chapter 1.6, an analog
expression for Markov processes with continuous time is given
where the transition rates are modified.

For c �= 0 these truncated processes can be used to construct
simulation techniques such as [15,19]. In the Appendix we
explicitly demonstrate the connection of these methods with
the truncated processes.

For c = 0 the process x̂t is strictly truncated to Xj , i.e., the
measure �̂(X\Xj ) is zero, and for x ∈ Xj we have

�̂j (x) = �(x)

�(Xj )
= Pr(x|x ∈ Xj ), (10)

where Pr(·|·) denotes the conditional probability of the original
process. In practice we generate trajectories of the strictly
truncated process x̂t by running a numerical scheme for the
original process xt with initial value in Xj . Each time t ′ when
the process leaves Xj , that is, xt ′ /∈ Xj , we artificially set x̂t ′ =
xt ′−1 and continue with a new realization of x which agrees
with x̂ at time t ′. Constructed in this way x̂t is a Markov chain
living on Xj with transition probabilities P̂ (·|·) defined above.
The procedure is illustrated in Fig. 1.

In this paper we devise a simulation method exploiting the
case c = 0. We sample the strictly truncated process for each
Xj of an ergodic partition and multiply the obtained expecta-
tion values with the corresponding weights �(Xj ). Summing
these weighted expectation values we obtain expectation
values according to the stationary probability distribution of

x̂0
x̂1

x̂2

x̂3 = x̂4

x̂5

x̂6

x̂7 x̂8 = x̂9

x̂10

x̂11

x̂12

x̂13

x4

x5

x6

x9
x10

x11

x12
x13

Xj

FIG. 1. Construction of the strictly truncated process x̂t . Inside
Xj the process follows realizations of xt . Each time xt leaves Xj the
truncated process is set back to its previous position and follows a
new realization of xt . Note that the two gray paths leaving Xj are
different realizations of xt .
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the original process, i.e.,

N∑
j=1

〈O〉Xj
�(Xj ) = 〈O〉X, (11)

where O(x) denotes an observable, 〈·〉Xj
is the expectation

value according to the stationary measure �̂j (x) of the process
strictly truncated to Xj , and 〈·〉X is the expectation value
according to the stationary measure �(x) of the original
process. The advantage of this method is that we can easily
obtain data also from regions of state space that are rarely
visited by the original process.

To reconstruct the expectation values of the original process
according to Eq. (11) we need to know the weights �(Xj ).
They can be estimated directly from the simulation of the
strictly truncated processes exploiting detailed balance without
the need to simulate the original process. From Eq. (2) it
follows that∑

y∈Xk

∑
x∈Xj

P (y|x)�(x) =
∑
x∈Xj

∑
y∈Xk

P (x|y)�(y). (12)

That is, the probability that xt ∈ Xj and xt+1 ∈ Xk equals
the probability that xt ∈ Xk and xt+1 ∈ Xj . Introducing the
transition indicator

1kj (xt+1,xt ) =
{

1, if xt ∈ Xj and xt+1 ∈ Xk,

0, else, (13)

we can rewrite Eq. (12) with the help of Eq. (10) in terms of
the expectation of the transition indicators as

〈1kj 〉Xj
�(Xj ) = 〈1jk〉Xk

�(Xk). (14)

During the simulation of the strictly truncated process we
count how often the original process tries a forbidden tran-
sition from Xj into Xk and denote this number as nkj (t) =∑t−1

t ′=0 1kj (xt ′+1,xt ′ ). The quantity nkj (t)/t is a time average of
1kj . Hence due to ergodicity we have

〈1kj 〉Xj
= lim

t→∞
nkj (t)

t
. (15)

Therefore, according to Eq. (14), for large t we can estimate

�(Xj )/�(Xk) ≈ njk(t)/nkj (t). (16)

Together with the normalization condition

N∑
j=1

�(Xj ) = 1 (17)

we find estimates for the weights �(Xj ).
We have formulated the simulation method for Markov

chains with countable state space X and discrete time. However
our main interest is to generate solution trajectories of SDEs
where both state space and time are continuous.

We nevertheless apply the method, as established meth-
ods discretize the time anyway, e.g., the Euler-Maruyama
scheme [25]. A rigorous generalization to systems with
continuous time could be a topic of further research. We did
not try this here since all our simulations rely on discrete time.

For our argument we used the Markov property, the
existence of a unique stationary measure, and further that this
measure is approached asymptotically for t → ∞, which is

ensured when the state space is countable. However the same
properties follow for a continuous state space, when xt is a
recurrent aperiodic Harris chain; see, e.g., [26,27]. The time
discretization scheme for SDEs used in this paper is a Harris
chain [28] and hence the method can be applied.

We further remark that all simulations performed on a
real computer use in fact a discretization in space due to the
finite resolution of floating point numbers. This discretization
in space might cause additional problems in particular with
respect to the Markov property. However, these problems are
not related to the method of patchwork sampling but appear
for any simulation when implemented on digital computers.

A. Introductory example

Consider the Langevin equation

ẋ = − ∂

∂x
U (x) + ξ (t), (18)

with

U (x) = −a

2
x2 + 1

4
x4, (19)

where x ∈ R and ξ (t) is Gaussian white noise satisfying

〈ξ (t)ξ (s)〉 = σ 2δ(t − s), (20)

where 〈·〉 denotes the average with respect to all realizations
of ξ .

The stationary probability density of the process xt de-
scribed by Eq. (18) is

ps(x) = 1

Z
exp

[
− 2

σ 2
U (x)

]
, (21)

where Z is the normalization.
We want to sample the trajectories of (18) with the Euler-

Maruyama scheme

x(t + 	t) = x(t) + [ax(t) − x3(t)]	t + σ
√

	t η(t), (22)

where η(t) are independent Gaussian random variables with
zero mean and variance 1. Equation (22) is an approximation
of Eq. (18) which becomes exact for 	t → 0. The scheme is
equivalent to the Milstein scheme since there is only additive
noise. The strong and the weak order of the scheme is 1;
cf. [25].

For a > 0 the probability density (21) is bimodal. For large
a or small σ , sampling ps(x) with the scheme (22) might
not lead to satisfying results because in that case the mean first
passage time to go from the potential minimum at x = √

a over
the potential barrier at x = 0 is exponentially large. According
to Kramers [29] we have

τmfp ≈ πσ 2√
−U ′′(

√
a)U ′′(0)

exp(2/σ 2	U )

= πσ 2

√
2a

exp[a2/(2σ 2)], (23)

with 	U = U (0) − U (
√

a). This time is exponentially large
in (a/σ )2. Hence it can easily be larger than any in practice
accessible simulation time such that starting in the vicinity of√

a we do not see the peak at −√
a in the simulation when
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naively applying Eq. (22). In this case the standard approach
is not at all applicable to sample the stationary distribution.

In this example the state space is X = R. To demonstrate
the advantage of the method we use the partition (X1, . . . ,X32)
with X1 = (−∞, − 3.5),X32 = [3.5,∞) and the other Xj are
intervals of equal length such that [−3.5,3.5) = ⋃31

i=2 Xi .
This partition is ergodic since each point of any interval can
be reached without leaving the interval before. We simulate
the processes x̂t truncated to Xj and find from simulation
histograms estimates of the truncated density; cf. Eq. (10).
Using Eq. (16) we determine estimates for the probabil-
ity ratios of adjacent intervals Ri,i+1 = �(Xi+1)/�(Xi),i =
1, . . . ,N − 1. From these ratios we can deduce the probability
ratios of two arbitrary intervals, e.g.,

R1,k =
k∏

l=2

Rl−1,l = �(Xk)/�(X1) for k > 1. (24)

Using the normalization condition (17) we obtain estimates
for all the �(Xj ) according to

�(Xi) = R1,i/

(
1 +

N∑
k=2

R1,k

)
. (25)

Hence we can reconstruct �(x) from the truncated probability
densities (10) according to

�(x) =
N∑

j=1

�̂j (x)�(Xj ). (26)

In Fig. 2 we see the stationary probability density. The den-
sity is approximated by a histogram of the coordinate x, where
we considered the indicator function of each histogram bin as
an observable, such that the technique of patchwork sampling
can be applied. Results of the simulation are compared with
a conventional simulation, and with the analytical result. The
total number of time steps and hence the computational effort
used in the decomposition method and in the conventional
simulation are equal. The decomposition method reproduces
the analytically known stationary probability density over
several orders of magnitude. The conventional simulation,
starting at x0 = 1, samples only the positive peak. According
to Eq. (23) the mean first passage time over the potential
barrier is τmfp ≈ 5.9 × 1010; hence it is four to five orders
of magnitude larger than the simulation time used. Thus
the conventional method cannot reproduce the full stationary
probability density.

B. High-dimensional example

We investigate an array of L stochastic, harmonically
coupled nonlinear constituents in global coupling under the
influence of additive noise, given by the system of Langevin
equations

ẋi = axi − x3
i − D

L − 1

L∑
j=1

(xi − xj ) + ξi (27)

for i = 1, . . . ,L. Here we consider a as the control parameter.
The strength of spatial interaction is controlled by D. The ξi

−4 −3 −2 −1 0 1 2 3 4
x

0.0

0.5

1.0

1.5

2.0

p
s
(x

)

(a)

−4 −3 −2 −1 0 1 2 3 4
x

10−10

10−8

10−6

10−4

10−2

100

p
s
(x

)

(b)

FIG. 2. Stationary probability density ps(x) of the process (18)
for parameters a = 7,σ = 1. Analytical solution given by Eq. (21)
(blue line), conventional simulation (green circles) starting at x0 =
1 with 3 × 109 time steps after a equilibration period of 6 × 108,
simulation by decomposition of state space (filled blue circles) with
108 time steps for each interval after an equilibration period of 2 × 107

steps. Step size in all simulations was 	t = 10−4, bin size = 0.007.
Note that in the conventional simulation the left peak is completely
missed. The same data are displayed on a linear (a) and a logarithmic
(b) scale. The logarithmic plot demonstrates perfect agreement of our
data with analytical results over 10 orders of magnitude.

are additive zero mean spatially uncorrelated Gaussian white
noise processes with autocorrelation function

〈ξi(t)ξj (t ′)〉 = σ 2δij δ(t − t ′); (28)

σ is the noise strength. The corresponding Fokker-Planck
equation is

∂tp(x,t) =
L∑

i=1

−∂xi

⎧⎨⎩
⎡⎣(a − D)xi − x3

i

+ D

L − 1

L∑
j=1

xj − σ 2

2
∂xi

⎤⎦p(x,t)

⎫⎬⎭, (29)

where x is the vector consisting of the coordinates xi .
This system was studied intensively, in particular in the

limit L → ∞ [24,30–34]. In this limit the center of mass RL
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becomes deterministic and is called the mean field:

m = lim
L→∞

RL = lim
L→∞

1

L

L∑
i=1

xi. (30)

In the stable stationary state, m is either zero or assumes one of
the values m+ = −m−. The transition from one to two stable
solutions occurs at a critical point a = ac [24]. The critical
point can be calculated numerically by evaluating the phase
transition condition [24].

For finite L the full stationary solution of (29) is

ps(x) = 1

Z
exp

⎧⎨⎩ − 2

σ 2

L∑
i=1

⎡⎣−a − D

2
x2

i + 1

4
x4

i

− D

L − 1

∑
j �=i

xj

⎤⎦⎫⎬⎭ (31)

with normalization Z.
The stationary distribution of the center of mass

ps,R(R) =
∫
RL

d ps(x)x δ

(
R − 1

L

L∑
i=1

xi

)
(32)

cannot easily be evaluated either analytically or numerically.
Hence it is interesting to access this distribution by simulations.
For the parameter regime where the stable solutions of
the infinite system satisfy m = 0 we expect a single-peak
distribution centered around zero for the finite system. When
the infinite system has two stable solutions m = ±m+ we
expect a double-peak distribution centered around ±m+ for
the finite system.

To apply the simulation method, we use the following
decomposition of the state space X = RL, where we make
use of the high symmetry of the system. A configuration
x(t) is in the set Xk if there are exactly k coordinates with
xi(t) < 0. Hence k ∈ {0, . . . ,L}. The sets Xk are invariant
under permutations of the coordinates because only the number
of coordinates that are smaller than zero determines whether a
configuration belongs to Xk . We decompose the sets Xk further
as Xk = Yk ∪ Zk , where x ∈ Xk is in Yk if x1 < 0 and it is in
Zk if x1 � 0. Hence

X =
L⋃

k=0

Xk =
L⋃

k=0

(Yk ∪ Zk) (33)

is a disjoint decomposition of the state space. Note that Y0 and
ZN are empty. Let

�̂Y
k (x) = �(x)/�(Yk) for x ∈ Yk,

�̂Z
k (x) = �(x)/�(Zk) for x ∈ Zk (34)

denote the stationary measures of the processes truncated to
Yk and Zk , respectively.

In order to obtain the weights �(Yk) and �(Zk) we count
the transition attempts mk(t) from Zk to Yk+1 and the number
of transition attempts m̃k(t) from Yk+1 to Zk . These are the
attempts of x1 to change sign while the number of other
coordinates which are smaller than zero remains constant. Due

to detailed balance it holds, cf. Eq. (12),∑
y∈Yk+1

∑
x∈Zk

P (y|x)�(x) =
∑
x∈Zk

∑
y∈Yk+1

P (x|y)�(y)

= 〈mk(1)〉Zk
�(Zk)

= 〈m̃k(1)〉Yk+1�(Yk+1). (35)

Due to ergodicity this is equivalent to, cf. Eq. (16),

�(Zk)

�(Yk+1)
= lim

t→∞
m̃k(t)

mk(t)
(36)

for the number of transition attempts of the truncated pro-
cesses. Furthermore we use a symmetry argument to justify
that

�(Yk) = k

L
�(Xk),

�(Zk) =L − k

L
�(Xk). (37)

Since the Fokker-Planck equation (29) is symmetric with re-
spect to any permutation of the coordinates also the stationary
measure � has this symmetry. Taking any configuration from
Xk and permuting the coordinates with a randomly chosen
permutation we will end up in Yk with probability k

L
and in Zk

with probability L−k
L

.
Given the ratios m̃k(t)/mk(t) Eqs. (36) and (37) form a

system of linear equations. With the normalization condition∑L
k=0 [�(Yk) + �(Zk)] = 1 one can, in principle, solve it to

obtain �(Yk) and �(Zk). However the transitions from Yk+1

to Zk and vice versa are rare; it takes a long time until x1

changes its sign. The accuracy of the measured estimates of
the expectation values in (35) can be improved dramatically
truncating the truncated processes another time.

We choose an ordered set of numbers 0 = s0 < s1 < · · · <

sN−1 < ∞ and decompose the negative half line as

(−∞,0) =
N⋃

l=1

Il, (38)

where Il = [−sl, − sl−1) for l = 1, . . . ,N − 1 and IN =
(−∞, − sN−1). Similarly for the positive half line

[0,∞) =
N⋃

l=1

Jl, (39)

where Jl = [sl−1,sl) for l = 1, . . . ,N − 1 and JN =
[sN−1,∞). We define the sets

Ykl = {x ∈ Yk|x1 ∈ Il},
Zkl = {x ∈ Zk|x1 ∈ Jl} (40)

for k = 0, . . . ,L and l = 1, . . . ,N and run a separate simu-
lation for the processes truncated to each of these sets. We
consider this as a second truncation as the process truncated to
Yk is truncated another time to Ykl and similarly for Zk . This
second truncation is very similar to the one-dimensional case
since only the coordinate x1 is caught in an interval. We denote
the stationary measures of the processes truncated to Ykl or Zkl

by ̂̂�Y
kl and ̂̂�Z

kl , respectively. For the truncation of Yk Eq. (26)
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becomes

�̂Y
k (x) =

N∑
l=1

̂̂�Y
kl(x)�̂Y

k (Ykl) (41)

and a similar relation is obtained replacing Y by Z[35].
In order to reconstruct the measure �̂Y

k we need to estimate
the measures of the patches �̂Y

k (Ykl). Therefore we count the
transition attempts nl+1,l(t) from Ykl to Ykl+1. Due to detailed
balance we have according to Eq. (16)

�̂Y
k (Ykl)

�̂Y
k (Ykl+1)

= lim
t→∞

nl,l+1(t)

nl+1,l(t)
, (42)

normalization implies
N∑

l=1

�̂Y
k (Ykl) = �̂Y

k (Yk) = 1 (43)

since the Ykl are disjoint and
⋃N

l=1 Ykl = Yk . Similar expres-
sions hold for Z.

We now can obtain the averages of the (possibly rare) events
mk and m̃k ,

〈mk(1)〉Zk
=

N∑
l=1

〈mk(1)〉Zkl
�̂Z

k (Zkl), (44)

〈m̃k(1)〉Yk
=

N∑
l=1

〈m̃k(1)〉Ykl
�̂Y

k (Ykl), (45)

replacing the ensemble averages of the twice truncated process
by the time averages as

〈mk(1)〉Zkl
= lim

t→∞
1

t
mk(t)|Zkl

, (46)

〈m̃k(1)〉Ykl
= lim

t→∞
1

t
m̃k(t)|Ykl

. (47)

Transitions in the twice truncated processes are not rare; thus
in times t accessible in simulations we can obtain estimates
for 〈mk(1)〉Zk

and 〈m̃k(1)〉Yk
with reasonable accuracy. With

Eqs. (35) and (37) and the normalization
∑L

k=0 [�(Yk) +
�(Zk)] = 1 we can solve for �(Yk) and �(Zk). Hence we
obtain also the measures

�(Ykl) = �̂Y
k (Ykl)�(Yk), (48)

�(Zkl) = �̂Z
k (Zkl)�(Zk). (49)

With them we can reconstruct the original measure

�(x) =
L∑

k=0

N∑
l=1

[̂̂�Y
kl(x)�(Ykl) + ̂̂�Z

kl(x)�(Zkl)
]
, (50)

and thus obtain the expectation value of any observable

〈O〉X =
∑
x∈X

O(x)�(x)

=
∑
x∈X

O(x)
L∑

k=0

N∑
l=1

[̂̂�Y
k (x)�(Ykl) + ̂̂�Z

k (x)�(Zkl)
]

=
L∑

k=0

N∑
l=1

[〈O〉Ykl
�(Ykl) + 〈O〉Zkl

�(Zkl)
]

(51)
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FIG. 3. Distribution of the center of mass coordinate R

for system sizes L = 2n × 10, n = 0, . . . ,5. Sharper distribu-
tions correspond to larger system sizes. a = 0.5 (a), a = ac =
1.07852814412735820149 (b), and a = 2 (c), σ = 1,D = 1. Each
data set was obtained from five independent realizations of 42 × L

simulations with 107 recorded time steps (	t = 10−4) after an
equilibration period of 2 × 106 time steps. The linewidth is twice
the standard deviation for each histogram bin (bin size = 0.005). The
vertical black lines indicate the stable stationary mean field values of
the infinite system.

from the expectation values obtained in the simulations of the
twice truncated processes.

We present in Fig. 3 simulation results for the stationary
distribution of the center of mass R, i.e., RL of Eq. (30),
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in the subcritical (a < ac), the critical (a = ac), and the
supercritical (a > ac) regime. In the subcritical and critical
case the distribution has a single peak centered around the
stationary mean field of the infinite system (m = 0). In the
supercritical case there are two stable values for the stationary
mean field (m = ±m+) of the infinite system. For a finite
system the center of mass distribution has two peaks centered
around these two values. As the system size becomes larger
the distributions become narrower in each case. For a � ac we
characterize fluctuations of R calculating its variance. Since
for a > ac we have a symmetric double-peak distribution for
ps(R), we characterize in this case fluctuations of R as the
variance of |R|. The shape of the fluctuations of R around its
mean field values is Gaussian for a �= ac and proportional to
exp(−αR4) for a = ac [36]. In the limit L → ∞ fluctuations
of the center of mass decay with a power law L−γ . From the
results in [31] describing the scaling of fluctuations of the
empirical measure of the xi one readily derives the exponents
γ = 1 for a < ac and γ = 1/2 at a = ac. For a > ac we expect
again γ = 1 but we are not aware of analytical results in this
regime.

Figure 4 shows the fluctuations of R obtained from
simulations as a function of the system size L in a log-log
plot. The exponent γ was obtained by a linear fit of the data
from the four largest system sizes. For a < ac deviations from
the theoretical value for L → ∞ are up to 5%. For a = ac the
deviation is about 6%. For a > ac the exponent also agrees
with the conjectured value γ = 1 within 5%. Note that the
deviations from the theoretical value are essentially not due
to inaccuracies in the measurements but are affected by the
finite system size since the power law is exact only in the limit
L → ∞. Our simulation technique is of similar accuracy in
all three cases. In particular the simulation at the critical point
is not affected by critical slowing down phenomena.

In the supercritical regime (a > ac) the infinite system
faces a breakdown of ergodicity. That is, there are three
stationary probability distributions from which two are stable;
cf. [24,32,33]. In the long time limit one of these stationary
distributions is reached asymptotically. Which of the stationary
solutions is obtained depends on initial conditions [37]. The
description in, e.g., [32] considers directly the infinite system;
that is, it first performs the limit L → ∞ and then investigates
stationarity by looking at the limit t → ∞. In our simulations
the approach is different as all simulations are done with
finite system size. By sampling the stationary distributions we
perform, in a sense, the limit t → ∞ first and in a second step
we try to notice the limit L → ∞ by investigating larger and
larger system sizes. There is no breakdown of ergodicity for
any considered finite system. However we see that both peaks
of the center of mass distribution become sharper and sharper
for larger system sizes. As the probability of the system to be
between both peaks decreases we expect that the mean first
passage time from one peak to the other diverges which is a
harbinger of a breakdown of ergodicity for the infinite system.

We emphasize that the simulation produces only stationary
distributions and it cannot estimate the probability of non-
stationary rare events. If a realization of a finite but large
system is observed for a finite time it is likely to stay close
to only one of the peaks throughout the whole observation
time. Such a trajectory seems to feel already the ergodicity
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ln(L)

−6

−5

−4

−3

−2

ln
(

R
2

R
2
) a < ac

(a)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ln(L)

−5

−4

−3

−2

−1

0

ln
(

R
2

R
2
)

a = ac

(b)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ln(L)

−7

−6

−5

−4

−3

ln
(

R
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FIG. 4. Fluctuations of the center of mass coordinate R as
a function of the system size L averaged over five independent
simulations; standard deviations are much smaller than the displayed
symbol size. The log-log plots visualize the same data as Fig. 3 and
clearly show power laws L−γ . A linear fit of the four rightmost data
points for each simulation gives γ = 0.955(2) (a), γ = 0.469(2) (b),
and γ = 1.046(2) (c).

breaking, since the observation time is not long enough to
observe the relaxation to the stationary state, but there is no
ergodicity breaking in the finite system in a strict sense. It is
important to know the complete stationary distribution when a
perturbed system driven by an external time dependent signal
is investigated; see, e.g., [38], which allows switching between
the two peaks.

033307-8



PATCHWORK SAMPLING OF STOCHASTIC DIFFERENTIAL . . . PHYSICAL REVIEW E 93, 033307 (2016)

The applicability of the technique hinges on the discovery
of an effective partition of the state space. Unfortunately, there
is no general recipe that allows one to automatically construct
an efficient partition for an arbitrary system, but details of the
particular system have to be taken into account. The partition
has to be ergodic; i.e., the process truncated to each patch
must be ergodic. To make the partition effective there must
be a reasonable number of transitions between the patches in
order to allow the determination of the corresponding weights
with a satisfying accuracy. If the number of transitions is too
low, the corresponding patch should be split into two or more.
On the other hand, exit attempts should not be the majority
of the data. If this is the case either the step size should be
reduced or the patch should be unified with another one. In the
last example we also used the symmetry of the system. Since
all coordinates xi are equivalent, an exchange between them
does not affect macroscopic observables and the division into
patches was based on the number of coordinates that lie in
certain sets.

IV. NONREVERSIBLE PROCESSES

In this section we generalize the procedure of the previous
section to nonreversible Markov processes. Assume we are
again in the situation that we want to sample only some part
of the configuration space. As before, the Markov process
will leave and enter the region of interest and in principle
we do not want to waste time simulating the trajectory
outside. If the trajectory has left the region of interest, the
question remains how to find the position of reentrance without
simulating the whole trajectory. Again it is not necessary to
obtain the reentrance position of this particular trajectory.
It would be enough to choose a position with the correct
probability distribution. Unfortunately, the same procedure
as for reversible processes does not work in this case, since
entrance and exit positions typically have different probability
distributions for nonreversible processes. We exploit that time
reversal of a trajectory transfers an exit position of the forward
process into an entrance position of the backward process.
Therefore we use the exit position of the forward process as
an initial position of a new realization of the backward process
and vice versa. Hence, each time the trajectory leaves the
region of interest we continue from the previous position with
the reversed process. In the following we will demonstrate that
this construction yields the desired statistical properties.

Consider an irreducible stationary Markov process xt with
discrete time t ∈ Z, defined on a countable state space X with
an ergodic partition (X1, . . . ,XN ) of X. As in Sec. III the
procedure can be generalized to Harris chains without any
problems, but for simplicity we will only discuss a countable
state space here. We denote the time reversed process by x̃t ;
cf. Eq. (1).

Consider the forward process xt that started at x0 ∈ Xj .
The last position of xt before it leaves Xj the first time will
be denoted by yout

1 . The position at the first time the process
reenters Xj will be denoted by y in

1 . The process continues to
leave and enter Xj . We denote the corresponding points of the
nth exit or entrance by yout

n and y in
n , respectively. Notice that

the process leaves or enters the region Xj with probability 1 in
finite time. Hence the above construction is reasonable. We can

consider the sequences {yout
n }n∈N and {y in

n }n∈N as stochastic
processes. In fact, they are time homogeneous Markov chains
that become stationary in the long time limit. They contain
some reduced information of the process xt similar to Poincaré
maps of dynamical systems. The analog construction can
be done for the reversed process x̃t leading to the reduced
processes {ỹout

n }n∈N and {ỹ in
n }n∈N.

Since xt is stationary {yout
n }n∈N and {y in

n }n∈N are stationary
as well. We denote their stationary distributions by �out and
�in, respectively. They can be expressed in terms of the
original probabilities

�out(y) = Pr(x1 = y|x2 /∈ Xj,x1 ∈ Xj ), (52)

�in(y) = Pr(x2 = y|x2 ∈ Xj,x1 /∈ Xj ). (53)

By construction we have a relation between the stationary
distribution of forward and backward processes, ∀y ∈ Xj :

�in(y) = �̃out(y), (54)

�out(y) = �̃in(y). (55)

The sequence of random variables yout
1 ,y in

1 ,yout
2 ,y in

2 , . . . is
a time inhomogeneous Markov chain since the transition
probabilities from yout

n to y in
n denoted by F (·|·) and from y in

n

to yout
n+1 denoted by G(·|·), which both map Xj × Xj → [0,1],

differ. We denote the corresponding transition probabilities of
the backward process by F̃ (·|·) and G̃(·|·). The form of these
transition probabilities is not important for our purposes but it
can be given explicitly in terms of conditional probabilities of
xt and x̃t . For example [39],

F
(
y in

1 |yout
1

)
=

∞∑
k=3

Pr
(
xk = y in

1 |xk ∈ Xj,{xl}k−1
l=2 /∈ Xj,x1 = yout

1

)
× Pr

(
xk ∈ Xj,{xl}k−1

l=3 /∈ Xj |x2 /∈ Xj,x1 = yout
1

)
=

∞∑
k=3

Pr
(
xk = y in

1 ,{xl}k−1
l=3 /∈ Xj |x2 /∈ Xj,x1 = yout

1

)
.

(56)

The second line in Eq. (56) is the probability that the process
returns to Xj the first time at position y in

1 given that the last
position in Xj was yout

1 and xt was outside Xj for exactly
k − 2 time steps. The third line gives the probability that xt

remains outside Xj for exactly k − 2 time steps, given that its
last position inside Xj was yout

1 . Summing over k we obtain
the transition probabilities, since the probability that xt will
never return to Xt is zero. Analogously, the other transition
probabilities are

G
(
yout

2 |y in
1

)
=

∞∑
k=3

Pr
(
xk /∈ Xj,xk−1 = yout

2 ,

{xl}k−2
l=3 ∈ Xj |x2 = y in

1 ,x1 /∈ Xj

)
, (57)
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F̃
(
ỹ in

1 |ỹout
1

)
=

∞∑
k=3

Pr
(
x̃k = ỹ in

1 ,{x̃l}k−1
l=3 /∈ Xj |x̃2 /∈ Xj,x̃1 = ỹout

1

)
, (58)

G̃
(
ỹout

2 |ỹ in
1

)
=

∞∑
k=3

Pr
(
x̃k /∈ Xj,x̃k−1 = ỹout

2 ,

{x̃l}k−2
l=3 ∈ Xj |x̃2 = ỹ in

1 ,x̃1 /∈ Xj

)
. (59)

With F (·|·) and G(·|·) we construct the transition probabilities
between two consecutive states of the time homogeneous
processes y in/out

n :

T in
(
y in

n+1|y in
n

)
:=

∑
y∈Xj

F
(
y in

n+1|y
)
G
(
y|y in

n

)
, (60)

T out
(
yout

n+1|yout
n

)
:=

∑
y∈Xj

G
(
yout

n+1|y
)
F
(
y|yout

n

)
. (61)

Denote the probability measure of y in/out
n by �in/out

n and anal-
ogously the probability measures of the backward processes
ỹ in/out

n by �̃in/out
n . They satisfy the consistency conditions

�in
n (y) =

∑
y ′∈Xj

F (y|y ′)�out
n (y ′), (62)

�out
n+1(y) =

∑
y ′∈Xj

G(y|y ′)�in
n (y ′), (63)

and analogously for the backward process

�̃in
n (y) =

∑
y ′∈Xj

F̃ (y|y ′)�̃out
n (y ′), (64)

�̃out
n+1(y) =

∑
y ′∈Xj

G̃(y|y ′)�̃in
n (y ′). (65)

We can consider the sets of equations (62) and (63) or (64)
and (65) as measure valued dynamical systems. Their fixed
points (�in

fp,�
out
fp ) and (�̂in

fp,�̂
out
fp ) are just the stationary

measures

�in
fp = �in, (66)

�out
fp = �out, (67)

�̃in
fp = �̃in = �out, (68)

�̃out
fp = �̃out = �in, (69)

where we used the relations (54) and (55) between forward
and backward processes.

A new stochastic process z
j
t living on the subset Xj can

be constructed in the following way. Given some x0 ∈ Xj

consider the process xt started at x0. Let t1 be the first time
xt leaves Xj . Set z

j
t = xt for all 0 � t < t1. Now consider the

reversed process x̃t started at z
j

t1−1 at time t1 and denote the

first time x̃t leaves Xj by t2. Set z
j
t = x̃t for all t1 � t < t2.

Let t3 be the time the process xt started at time t2 at z
j
t2 leaves

z0
z1

z2

z3 =z4

x4

x5

z5z6

z7

z8 =z9

x̃9

x̃10

z10 z11

z12
z13

z14 =z15 x15

x16z16

z17

z18 =z19

x̃19

Xj

FIG. 5. Construction of the process zt (filled arrows) from
realizations of the forward process xt (dark blue) and the backward
process x̃t (dusky pink). Once a realization leaves Xj for the first
time it is ignored from then on (illustrated by empty arrows) and the
process zt follows a new realization of the process in the other time
direction. Note that the paths leaving Xj are different realizations of
xt or x̃t .

Xj for the first time. Set z
j
t = xt for all t2 � t < t3. Continue

in this way switching between realizations of xt and x̃t . The
construction is illustrated in Fig. 5.

The process zi
t is ergodic. It has a unique stationary prob-

ability density which is equal to the conditional probability
density of the original process xt given xt ∈ Xi as we prove in
the following.

In the construction of the process zi
t we especially consider

the times t1,t2, . . . ,tn. We denote the positions at these times
by ŷn := zi

tn
and consider even and odd indices separately by

introducing ŷ in
n = ŷ2n and ŷout

n = ŷ2n−1 for n = 1,2, . . . . These
are the last positions of the forward or backward process before
it leaves the region Xj . Let �̂in/out

n be the probability measure
of ŷ in/out

n . Then the consistency conditions for the processes
ŷ in/out

n are

�̂out
n+1(y) =

∑
y ′∈Xj

G(y|y ′)�̂in
n (y ′), (70)

�̂in
n (y) =

∑
y ′∈Xj

G̃(y|y ′)�̂out
n (y ′). (71)

Denote the fixed point of these equations by �̂in/out
fp . Considered

as a map of probability measures Eq. (70) is identical to
Eq. (63) and Eq. (71) is identical to Eq. (65). Hence we already
know a pair of measures that satisfies Eqs. (70) and (71); their
fixed point is (

�̂out
fp ,�̂in

fp

) = (�out,�in). (72)

Since ŷ in/out
n have unique stationary measures, this is the unique

fixed point. Hence the processes y in
n and ŷ in

n have the same
stationary measures as well as the processes yout

n and ŷout
n .

The process zt is constructed by pieces of realizations of the
processes xt and x̃t . The initial positions ŷ in/out

n of these pieces
are in the long time limit distributed as the initial positions
of the original processes xt or x̃t . Therefore the distribution
of zt when the time direction is forward will asymptotically
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be the same as the distribution of xt given that xt ∈ Xj . The
distribution of zt when the time direction is backward is the
same as that of x̃t given that x̃t ∈ Xj . But the stationary
distributions of xt and x̃t are the same. Therefore the time
direction of zt is not important and it will be distributed as xt

given xt ∈ Xj . Note that for a reversible process xt and x̃t are
equivalent. Then the process zi

t is the truncated process; cf.
Sec. III.

In order to reconstruct expectation values according to the
stationary measure of the original process we need to obtain
the weights �(Xi). Similarly to the reversible case we use the
number of transition attempts from Xi into Xj . We introduce
the transition indicator functions

1kj (xt+1,xt ) =
{

1, if xt ∈ Xj and xt+1 ∈ Xk,

0, else, (73)

1̃kj (x̃t+1,x̃t ) =
{

1, if x̃t ∈ Xj and x̃t+1 ∈ Xk,

0, else, (74)

of the forward and backward process. Since each realization
of the backward process can be obtained by time reversal of
one realization of the forward process we have for the original
forward and backward process

〈1kj 〉 =
∑
x∈Xj

∑
y∈Xk

P (y|x)�(x)

=
∑
y∈Xj

∑
x∈Xk

P̃ (y|x)�̃(x) = 〈1̃jk〉. (75)

We can express these expectation values in terms of the
truncated process as

〈1kj 〉Xj
�(Xj ) = 〈1kj 〉 = 〈1̃jk〉 = 〈1̃jk〉Xk

�̃(Xk). (76)

Counting the number of transition attempts of the forward
process nkj and dividing by the number of time steps s in the
forward direction is the same as time averaging the transition
indicator function 1kj ; hence

〈1kj 〉Xj
= lim

t→∞
nkj (t)

s(t)
(77)

and analogously for the backward process with the number of
time steps in the backward direction s̃:

〈̃1jk〉Xk
= lim

t→∞
ñjk(t)

s̃(t)
. (78)

Since limt→∞ s(t)/s̃(t) = 1 with probability 1, we find with
Eq. (76)

�(Xj )/�(Xk) ≈ ñjk(t)/nkj (t), (79)

where we used that �(x) = �̃(x). Together with the normal-
ization ∑

j

�(Xj ) = 1 (80)

we can estimate the �(Xj ) for all j . And expectation values
of observables can be obtained from expectation values of the
truncated process according to Eq. (11).

In this section we have extended the theory of strictly
truncated Markov chains to systems without detailed balance.
We remark that it is also possible to construct for nonreversible

systems a non-strictly-truncated process that has the stationary
measure (9) as in the reversible case. Therefor the construction
of the process zt needs to be slightly modified. Each time
the process attempts to leave the set Xj , the step is accepted
with probability c. In that case the process continues with a
realization of xt . With probability 1 − c the escape from Xj

is not accepted and the process is set back to the previous
position. From then on the process follows a realization of the
reversed process x̃t . Each time when an escape from Xj is
not accepted the time direction is reversed. This construction
yields the most general version of the truncated process for
nonreversible Markov chains. However in this paper we will
only use the strictly truncated process.

Example

In the following we will demonstrate the applicability of
the method with a simple proof-of-principle example. We aim
to construct a one-dimensional, nonreversible system that is
as simple as possible but still not totally trivial. Hence we
consider an overdamped motion on the circle, described by
the angular variable φ with additive Gaussian white noise.
We will proceed to give the general construction of the time
reversed process of such a system, considering the Langevin
equation

φ̇ = f (φ) + ξ (t), (81)

where f : [0,2π ] → R is a continuous and continuously
differentiable function with f (0) = f (2π ) and f ′(0) =
f ′(2π ),φ ∈ [0,2π ], and ξ (t) is Gaussian white noise of
strength σ . The corresponding Fokker-Planck equation

∂tp(φ,t) = −∂φ

{[
f (φ) − 1

2σ 2∂φ

]
p(φ,t)

}
(82)

with periodic boundary conditions, p(0,t) = p(2π,t) and
similarly for ∂φp, has a unique stationary normalized solution
ps(φ). We use the stationary solution to define the potential

U (φ) := −σ 2

2
ln ps(φ) + C, (83)

where the constant C can be chosen arbitrarily. With this
potential we rewrite the Langevin equation as

φ̇ = −∂φU (φ) + g(φ) + ξ (t), (84)

where

g(φ) := f (φ) + ∂φU (φ). (85)

Using this reformulation the stationary Fokker-Planck equa-
tion becomes

0 = − ∂φ

{[ − ∂φU (φ) − 1
2σ 2∂φ

]
ps(φ)

}
− ∂φ

[
g(φ)ps(φ)

]
. (86)

The term inside the curly brackets is zero by construction of
the potential U (φ). The term on the second line defines the
stationary probability current

jps = g(φ)ps(φ), (87)

which must be constant with respect to φ in order to satisfy
Eq. (86). It is zero if and only if g(φ) ≡ 0, since ps(φ) >

0 due to the additive noise. If the probability current jps is
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zero the process is reversible. If it is nonzero the process is
not reversible and the time reversed process is obtained by
reversing the probability current. Hence the forward process
follows Eq. (84) and the time reversed process follows the
Langevin equation

φ̇ = −∂φU (φ) − g(φ) + ξ (t). (88)

In general one would find the potential U and the current term
g only after solving the stationary Fokker-Planck equation.
This can be done for any function f . As we aim to construct a
preferably simple irreversible system we start by choosing the
potential

U (φ) = −A

3
cos(3φ) (89)

and the probability current

jps = λ, (90)

where A,λ ∈ R are system parameters. Then the stationary
probability distribution

ps(φ) = 1

Z
exp

[ 2

σ 2

A

3
cos(3φ)

]
(91)

with normalization factor Z is independent on the probability
current λ. Hence the system describes the overdamped mo-
tion in a −A

3 cos(3φ) potential with an additional constant
probability current. The Langevin equation that belongs to the
choice (89) and (90) is

φ̇ = λZ exp
[

− 2

σ 2

A

3
cos(3φ)

]
− A sin(3φ) + ξ (t) (92)

and the reversed process is obtained replacing λ by −λ.
This system can easily be simulated using a conventional

method, but we use it for a proof of principle of our simulation
method for nonreversible systems. The simulation technique
developed in this section was applied to simulate the SDE (92).
The state space [0,2π ] was divided into ten intervals of equal
size starting with X1 = [0,π/5). We simulated each subset Xi

with 108 time steps. The simulation results are shown in Fig. 6.
There is perfect agreement between the simulation results and
the analytic stationary solution (91).

We have demonstrated that for the overdamped motion with
force f and additive noise it is always possible to decompose
f into a potential part and a part which gives rise to a constant
probability current. In higher dimensions there is a similar
decomposition of the force into a potential part and a part
responsible for a divergence-free probability current density;
see for example [40].

V. CONCLUSION

In this paper we have used the concept of truncated
reversible Markov processes to develop a simulation technique
based on the decomposition of state space. We cut the state
space into nonoverlapping patches Xj and run a strictly
truncated process on each of them. Expectation values of
observables from each of the truncated processes are averaged
with the correct weights to obtain expectation values of
observables of the original process.

The method collects data from all patches Xj , which is of
particular advantage when the original process visits some of

0 π 2π
φ

0.0

0.1

0.2

0.3

p
s
(φ

)

FIG. 6. Stationary probability density ps(φ) of the process (92)
for parameters A = 1,σ = 1, and λ = 1. Analytical solution (blue
line) given by Eq. (91) and simulation (filled blue circles) by
decomposition of state space into 10 equally sized intervals with
108 time steps of size 	t = 10−4 for each interval. Simulations for
other values of λ (2 and 5) give the same results.

these sets only rarely. Furthermore the simulation is parallel;
hence all truncated processes can be simulated at the same
time. The technique is however restricted to the determination
of expectation values according to the stationary measure. It
is not suitable to sample the probability of nonstationary rare
events, such as first exit events. Contrariwise, it is designed to
obtain the stationary properties without the need to wait for
the rare events.

We apply the method to stochastic differential equations
(SDEs), where we sample the stationary distribution and
obtain expectation values of observables. The one-dimensional
overdamped motion in a double-well potential with additive
Gaussian white noise is used as an introductory example.
Already there a conventional simulation fails to sample the
double-peak distribution when the potential barrier is too large,
whereas our method delivers the correct distribution over ten
orders of magnitude.

As a second example a system of L constituents sub-
ject to independent additive Gaussian white noise, moving
overdamped and globally coupled in the same double-well
potential, is simulated. In the limit L → ∞ the center of mass
becomes deterministic and has, depending on parameters,
one or two stable fixed points. For finite system sizes our
simulations produce center of mass distributions that fluctuate
around the L → ∞ values. For a �= ac these fluctuations
are Gaussian whereas at a = ac they have a distribution
∝ exp(−αR4). The strength of the fluctuations decays with
a power law. The exponents are predicted by theory for a < ac

and a = ac, where they agree with our simulation results. For
a > ac we are not aware of theoretical predictions but we
find the same exponent as in the subcritical regime in our
simulations. Even at the critical point the simulations are not
suffering slowing down effects but produce results almost as
accurate as in other parameter regimes.

Furthermore we generalize the concept of truncated Markov
chains to ergodic processes that are not reversible. Thereby we
are able to transfer the patchwork method to systems without
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detailed balance. We apply it to a one-dimensional SDE on the
circle that has a constant probability flow in its steady state.

We only use strictly truncated processes for our patchwork
simulation technique. However the generalization of the
non-strictly-truncated process to systems without detailed
balance might be of interest for other simulation methods that
implicitly use truncated process and usually require detailed
balance.
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APPENDIX: TRUNCATED PROCESSES AND MARKOV
CHAIN MONTE CARLO SIMULATIONS

In Sec. III we introduced the truncated process by changing
the transition probabilities from one region of state space into
another by a factor c. It is possible to repeat this construction
with different regions of state space and with different values
for c again and again. We give an example construction that
eventually leads to a Markov chain as it appears in simulation
techniques that sample with a modified probability measure
such as [15,19].

We choose a function f (j ) for j ∈ {1, . . . ,N}. In a first
step, if f (1) > f (2), we modify the transition probabilities
from X1 into

⋃N
l=2 Xl choosing c = exp[f (2) − f (1)] < 1.

If f (1) < f (2) we modify the transition probabilities in the
other direction, that is from

⋃N
l=2 Xl into X1 choosing c =

exp[f (1) − f (2)]. In the next step we manipulate the transition
probabilities from X1 ∪ X2 into

⋃N
l=3 Xl . If c = exp[f (3) −

f (2)] < 1 we choose this factor; else we choose the factor c =
exp[f (2) − f (3)] for the transitions in the other direction. We

continue to change the transition probabilities between X1 ∪
X2 ∪ X3 and

⋃N
l=4 Xl in a similar way. We proceed until we

have modified the transition probabilities between
⋃N−1

l=1 Xl

and XN . The resulting stationary probability measure satisfies
according to Eq. (9)

�̂(Xj ) = 1

Z
�(Xj ) exp[f (j )], (A1)

where the normalization Z is such that �̂(X) = 1.
For example, in a Metropolis Monte Carlo simulation in

a first step a new state that is chosen at random according
to some probability distribution is proposed. In a second step
the update is either accepted or rejected with some probability
depending on both states. These two steps are repeated.

As the process is constructed here, it might happen that for
two configurations x and x ′ from different sets Xj and Xj ′ there
is a nonzero probability of rejection in both directions x → x ′
and x ′ → x. This makes the simulation inefficient. Without
changing the stationary measure we can in this case reduce
the probability of rejection in both directions by increasing
the probabilities of acceptance by the same factor, such that
the acceptance probability is 1 in one direction. Doing so,
depending on the choice of Xj and f , we end up with a process
used, for example, in multicanonical [15] or Wang-Landau [19]
simulations. In the multicanonical case the sets Xj consist
of all states within some energy interval [Ej ,Ej+1) and the
function f is related to the density of states g and the average
energy on this interval f (j ) = (Ej + Ej+1)/2 − ln g[(Ej +
Ej+1)/2], where we assumed for simplicity that the inverse
temperature β = 1. In Wang-Landau sampling the function f

is related only to the density of states at the mean energy of the
energy interval f (j ) = − ln g[(Ej + Ej+1)/2]. After such a
choice of f , in both cases, the process travels to all considered
energy intervals with the same probability. Of course, the main
ingredient of these methods is to effectively determine the
function f from simulations.
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